MATH 54-MOCK MIDTERM 1 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) If A and B are square matrices, then $(A+B)^{-1}=A^{-1}+B^{-1}$.

FALSE

For example, take $A=[2]$ and $B=[3]$. Then the statement says: Is $\frac{1}{2+3}=\frac{1}{2}+\frac{1}{3}$? Which is not true.

Other explanation: Take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$, then $A+B$ is the zero matrix, whose inverse is not defined, while the right-hand-side gives you 0 .
(b) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one linear transformation, then T is also onto.

TRUE

Let A be the matrix of T. Then, if T is one-to-one, then A is invertible (by one of the conditions of invertibility), and hence, by another condition of invertibility, this implies that T is onto. Note that is works precisely because $m=n$, the result doesn't hold in general!
(c) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ are linearly independent vectors in \mathbb{R}^{n}, then $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is linearly independent as well!

TRUE

Suppose $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}=\mathbf{0}$.
Goal: We want to show $a=b=0$.

Now here's a clever trick: Add $0 \mathbf{v}_{\mathbf{3}}=\mathbf{0}$ to both sides of the equation.

Then we get: $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}+0 \mathbf{v}_{\mathbf{3}}=\mathbf{0}$
In particular, if we let $c=0$, then we get: $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}+c \mathbf{v}_{\mathbf{3}}=\mathbf{0}$
But $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are linearly independent, so $a=b=c=0$.
In particular $a=b=0$, which we wanted to show!

Note: I have to admit, this is a tricky proof! But it illustrates why it's important to write down what you want to show and what you know!
(d) If A is an invertible square matrix, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

TRUE

Let $B=\left(A^{-1}\right)^{T}$. All we need to show is that $A^{T} B=B A^{T}=$ I, because then $B=\left(A^{T}\right)^{-1}$, which is what we want to show.

But:

$$
A^{T} B=A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

Where in the first step, we used the property of transposes $(C D)^{T}=D^{T} C^{T}$.

Similarly:

$$
B A^{T}=\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I
$$

Hence $A^{T} B=B A^{T}=I$, which is what we needed to show!
Note: This question is hard too! The reason I put this question is because Prof. Grunbaum mentioned in lecture that it might be on the midterm!
(e) If A is a 3×3 matrix with two pivot positions, then the equation $A \mathrm{x}=\mathbf{0}$ has a nontrivial solution.

TRUE
If A has two pivot positions, then it has a row of zeros, and hence, because A is a 3×3 matrix, the solution $A \mathbf{x}=\mathbf{0}$ has at least one free variable, hence the equation $A \mathrm{x}=\mathbf{0}$ has a nontrivial solution!
2. (15 points) Solve the following system (or say it has no solutions):

$$
\left\{\begin{array}{c}
x+y+z=0 \\
2 x+2 z=0 \\
3 x+y+3 z=0
\end{array}\right.
$$

Write down the augmented matrix and row-reduce:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
2 & 0 & 2 & 0 \\
3 & 1 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & -2 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Now rewrite this as a system:

$$
\left\{\begin{array}{c}
x+z=0 \\
y=0
\end{array}\right.
$$

That is:

$$
\left\{\begin{array}{c}
x=-z \\
y=0 \\
z=z
\end{array}\right.
$$

Or in vector form:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=z\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

(where z is free)
3. (20 points) Find the inverse of the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 2 \\
1 & 0 & 1
\end{array}\right]
$$

Form the (super) augmented matrix and row-reduce:

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & I
\end{array}\right] } & =\left[\begin{array}{cccccc}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & 2 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 2 & 1 & -1 & 1 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & -2 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & -1 & -1 & -3 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & -2
\end{array}\right] \\
& =\left[\begin{array}{llll}
I & A^{-1}
\end{array}\right]
\end{aligned}
$$

Hence:

$$
A^{-1}=\left[\begin{array}{ccc}
-1 & -1 & -3 \\
-1 & 0 & 1 \\
1 & 1 & -2
\end{array}\right]
$$

4. (10 points) What's the next elementary row operation you would use to transform the following matrix in row-echelon form? What is the corresponding elementary matrix?

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 2 & 1
\end{array}\right]
$$

Notice that A is almost in row-echelon form, except for that 2 in the last row. Hence, we want to subtract 2 times the second row from the third row to 'eliminate' the 2 .

In other words, the answer is: $\operatorname{Add}(-2)$ times the $2^{\text {nd }}$ row to the $3^{\text {rd }}$ row.
The corresponding elementary matrix is:

$$
E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]
$$

Optional: You can indeed check that:

$$
E A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 3
\end{array}\right]
$$

which is indeed in row-echelon form!
5. (10 points, 5 points each) Evaluate the following products if they are defined, or say 'undefined'
(a) $A B$, where:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & 5 \\
0 & 7 \\
-1 & 3
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
A B=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right]
\end{gathered}
$$

(b) $A B$, where:

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
2 & -1 & 0
\end{array}\right], B=\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 1 & 3 \\
0 & 0 & 1
\end{array}\right] \\
A B=\left[\begin{array}{ccc}
0 & 1 & 1 \\
2 & 1 & 3 \\
-2 & 1 & -3
\end{array}\right]
\end{gathered}
$$

6. (10 points) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation which reflects points in the plane about the origin.
(a) (5 points) Find the matrix A of T.

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

Hence:

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

(b) (5 points) Use A to find $T(1,1)$.

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
$$

7. (10 points) Find a basis for $\operatorname{Nul}(A)$ and $\operatorname{Col}(A)$, where A is the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & -1 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Row-reduce A :

$$
\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & -1 & 1 \\
0 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 1 & 2 \\
0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

Notice that every column has a pivot, hence to get a basis for $\operatorname{Col}(A)$, go back to A and select all the columns for A, and you get that a basis for $\operatorname{Col}(A)$ is:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]\right\}
$$

Finally, to find a basis for $\operatorname{Nul}(A)$, we need to solve $A \mathbf{x}=\mathbf{0}$. However, notice that A is a 3×3 matrix with 3 pivots, hence the only solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$. It follows that:

$$
N u l(A)=\{0\}
$$

Note: You might be tempted to say that $\{0\}$ is a basis for $N u l(A)$, but this is technically wrong (but you wouldn't get points off for that). The correct answer is that the basis is $=\emptyset$, but you don't need to know that. The main point is that you should be able to know the procedure for finding $\operatorname{Nul}(A)$.

